

Short Pulses - Accelerator and Optics Perspective

APS Upgrade Summary Workshop Argonne, August 11, 2006

Acknowledgements

ASD:

Michael Borland

Kathy Harkay

John Carwardine

Ali Nassiri

Roger Dejus

XSD:

Sarvjit Shastri

Lahsen Assoufid

Jin Wang

Outline

- 1. Brief History
- 2. Concept
 - ⇒ Deflecting ("crab") RF cavities
- 3. Technical Feasibility
 - \Rightarrow RF cavities configurations
- 4. Beamline Perspective

In the Beginning...

APS Strategic Planning Workshop (Aug 2004): Time Domain Science Using X-Ray Techniques

Exploring the possibility of shorter timescales at the APS \Rightarrow generation of 1 ps x-ray pulses whilst retaining high-flux.

This important time domain from 1 ps to 100 ps will provide a unique bridge for science between capabilities at current storage rings and future x-ray FELs.

Goal:

- ~1 ps pulses √
- Energy tunability √
- Flux comparable to 100 ps
- High repetition rate

More "In-House" Meetings

APS User's Meeting: Workshop on Generation and Use of Short X-ray Pulses at APS (May 2005)

APS Upgrade Planning: Workshop on Picosecond Science (June 2006)

⇒ Linda Young to report

2. Concept*

*A. Zholents, P. Heimann, M. Zolotorev, J. Byrd, NIM **A425** (1999)

Radiation from head electrons

Choice of Cavities: Pulsed versus CW

Pulsed*

- Cheaper and faster to implement
- Cavities are only 0.5 m long and water cooled
- Room temperature technology
- Repetition rate limited to ~ 1 kHz

CW

- High repetition rate (CW)
- Cavities are long ~ 2.5 m
- Cryo cooled technology
- Expensive and time-consuming to implement

^{*}Never done before in a storage ring

Allen Stewart Königsberg (1935)

"We stand at a crossroads: One path leads to despair and

hopelessness. The other leads to total extinction.

Let us hope we have the wisdom to make the right choice."

Pulsed or CW?

More sensible to implement the PULSED option

Short Term Implementation of Picosecond Capability*

Phase I:

Offers limited picosecond capability within 12 months

- ⇒ Rep rate: 120Hz, pulse length: ~few ps, 2.4m undulator
- ⇒ Hybrid fill pattern, only the 16mA bunch is chirped
- ⇒ Only one sector affected

Phase II:

Incremental progression to ~1ps source at 1kHz rep rate, and with increased flux (extended straight section)

Additional 12 months

*Aggressive schedule not without technical challenges

Contributing to Fast Track Implementation

Some hardware already in house:

Spare linac klystron + modulator (relocate to SR area)

Other hardware in advanced design phase:

Four new 0.5 m crab cavity structures

3. Proposed Compact (Single Sector) Option

Phase I Standard straight section: 5 m long

Hybrid Fill Pattern and Chirp Timing

J. Carwardine

Phase II: Upgrade Path

Extended (7.7m) long straight section

Timetable

Sept 2007:

Phase I:

Implement 120 Hz rep rate and 3 ps pulse length

Sept 2008:

Phase II:

Increase rep rate to 1kHz

Two new klystrons, new modulator

Shorten pulse length to ~1ps

- Long ID straight section
- Reposition crab cavity structures

Increase photon flux

Install long undulator

4. Beamline Optics

Scenario 1:

Slits only

Variation on Scenario 1:

Slits plus asymetrically cut crystal

Beamline Optics, Continued

Scenario 2: Mirrors and Crystals

S. Shastri, R. Dejus, L. Assoufid

Flux Comparisons

Using slits only, flux reduced by a factor of ~ 50

S. Shastri

Next

Implement picosecond capabilities in Sector 7

Step 1:

Low pulse rate (120 Hz, Phase I) and limited accessibility of the running mode

- Plans for the first year with 120 Hz beam:
 - Commission the short-pulse instrumentation
 - Develop synchronization protocols
 - Beam diagnostics for accelerator improvement and experiment apparatus
 - Suitable detectors: x-ray streak camera for laser-x-ray time stamping
 - Synchronize laser and the short x-ray pulse with 1-2 ps jitters
 - ⇒ Preliminary experiments possible with 120 Hz

After Step 1

Step 2 (May coincide with Phase II implementation):

Develop beamline instrument for short-pulse operation

- Suitable undulator (tunable in the 6-15 keV range)
- X-ray optics (focusing, shutter)
- Efficient detectors
- Lasers

Developing Troika-type beamline to maximize the use of the short pulses

- Station 7-ID-D for mono or wide-bandpass beam experiments
- Station 7-ID-C for monobeam experiments

Work in Progress

- R&D effort on CW cavities
- R&D on beam compression optics and its implementation
- Simulation studies: effect of beam chirping on emittance

Conclusion

Implementation of fast track picosecond capabilities in Sector 7 BEFORE the planned upgrade makes sense:

- Scientifically exciting
- Technically feasible
- Economically reasonable
- Sociologically acceptable

